

Typhoon HIL Webinar

The perfect balance of speed, power and flexibility.

Application demos:

e-Mobility

Microgrids

HIL606

4th Generation Flagship

Special guests:

Panelists

Dusan Majstorovic

СТО

Typhoon HIL

David Dunnett

Head of Software Development Rolls-Royce Solutions Berlin

Dusan Cohadzic

Senior Modelling Engineer

Typhoon HIL

Ioannis Arvanitis

Senior Software Engineer Rolls-Royce Solutions Berlin

- □ Motivation behind the 4th generation flagship | **Dusan Majstorovic**
- Challenges to Microgrid Controller Design and Testing | **David Dunnett**
- Application Demo 1 | **Dusan Cohadzic**
 - Microgrid control validation and DER interoperability
- □ HIL606 Key features | **Dusan Majstorovic**
- Application Demo 2 | **Dusan Cohadzic**
 - High-frequency converters in eMobility applications
- \Box Q&A | **All** (10 mins)

Challenges

HIL applications are getting more complex

- □ Converter level
 - Complex multi-module converters
 - High switching frequencies
- □ System level
 - Large models with accurate average component models
 - System models with component controllers in the loop
- □ Connectivity
 - Many different connectivity interfaces used in different application fields

HIL606 Concept

 \square HIL606 = HIL604 + HIL404 + more connectivity

- HIL604 FPGA solver and IO capacity
- HIL404 FPGA solver time resolution and CPU power
- New unique connectivity options and improved flexibility

HIL404		HIL606	
			4 th Gen
HIL402	HIL602+	HIL604	
			3 rd Gen

Typhoon <u>HIL</u>

Time resolution

- □ Energy Storage + Microgrid Control
 - 50+ systems
 - □ Greenland to Patagonia, Haiti to Indonesia
 - Multiple and varied DERs per MG
 - Standard control solution
 - Real-time, rules-based, goal-oriented

HIL helps with

- Real-time simulation of complex microgrid
- Scenario replay and manual testing
- Automated regression testing

San Pedro de Atacama 20 Oct 2020, 15:42:49 Login EN C

Microgrid Control Testing

Demo setup #1

HIL606 Highlights

- □ Fully backward compatible with all devices
 - Plug-and-play upgrade
- □ FPGA solver
 - HIL604 capacity (up to 8 cores)
 - HIL404 speed
 - □ **75%** faster than HIL604
 - □ Sim step down to 200ns
 - □ 3.5ns DI sampling resolution
- □ CPU
 - Up to 3 user accessible CPU cores
 - 10x faster than HIL604
 - 10% faster than HIL404
- - HIL604 pin count
 - HIL404 speed

HIL Simulators	HIL402	HIL404	HIL604	HIL606
Model capacity				
Detailed converter models (1ph/3ph)	8/4	8/4	16/8	16/8
Average converter models (3ph)	8	12	10	24
Distribution network simulation	\checkmark	\checkmark	\checkmark	\checkmark
Time resolution				
Minimum simulation step	500 ns	200 ns	500 ns	200 ns
DI sampling resolution	6.2 ns	3.5 ns	6.2 ns	3.5 ns
I/O				
Analog I/O per unit	16/16	16/16	32/64	32/64
Digital I/O per unit	32/32	32/32	64/64	64/64
Connectivity				
USB	\checkmark	\checkmark	\checkmark	\checkmark
Ethernet	\checkmark	\checkmark	\checkmark	\checkmark
CAN		\checkmark	\checkmark	\checkmark
RS232		\checkmark	\checkmark	\checkmark
EtherCAT				\checkmark
SFP		\checkmark		\checkmark
Time synchronization (PPS and IRIG-B)			\checkmark	\checkmark
Paralleling		I In to 4 units	Up to 16 units	Up to 16 upits
r aranonny				

Explore New Connections

M.2 slot inside

Optional SSD for long-term offline data acquisition.

2 EtherCAT ports

 Hardware-supported slave interfaces

Communication with other devices only

SFP Simulation Link capable

Low latency daisy chaining with other EtherCAT devices

4 Ethernet ports

The first HIL device to have 4 Ethernet ports for greater flexibility to support multiple networks and different protocols.

- 2 ports for high level protocols
 - Modbus, DNP3, OPC UA
 - □ Incl THCC communication
- 2 ports for time critical protocols
 - □ IEC 61850 SV, Ethernet VE

2 CAN + 2 CAN FD ports

- Double the connectivity options with CAN devices
- Full support for flexible data rates in CAN FD ports
- Ideal for e-Mobility

2 **QSFP** for paralleling

Connect 16 devices with more connection flexibility

Bidirectional link

Not required to close the ring

Features

High Fidelity Modeling

- □ Switch-level GDS oversampling
- □ Highly detailed switch models
 - Forward voltage drop
 - Switching delays
 - Semiconductor power losses
- □ Highly detailed motor models
 - Core saturation and geometric effects
 - Motor losses
 - Fault emulation
- □ Time-varying passive components

THCC support

□ 2021.3 (early July)

- Same FW configurations like HIL604
- 2 user accessible CPUs
- 2 Ethernet ports supported
- No CAN FD support
- Limited SFP support
- No M.2 support

□ 2021.4 (early October)

- 3 user accessible CPUs
- All interfaces supported

Thank you for your attention!

Watch Webinar:

HIL606: 4th Gen Flagship for Complex Microgrids and E-Mobility Applications

