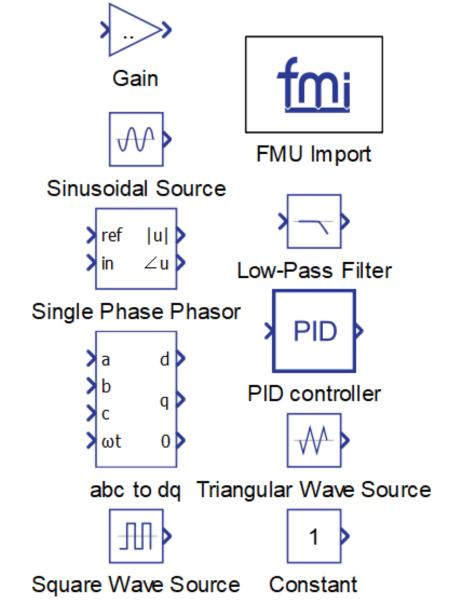


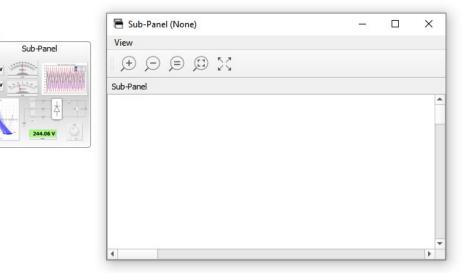
2021.2 Software Release Highlights


- Components with runtime-tunable properties
- Windowed mode for HIL SCADA sub-panels
- Setting AO/DO signals in Schematic Editor
- IGBT leg with switch-level oversampling
- SEL-751 high fidelity model
- DER models w/ Volt-VAr and Hz-Watt grid support

1.1 Components with runtime-tunable properties

Test faster, compile less

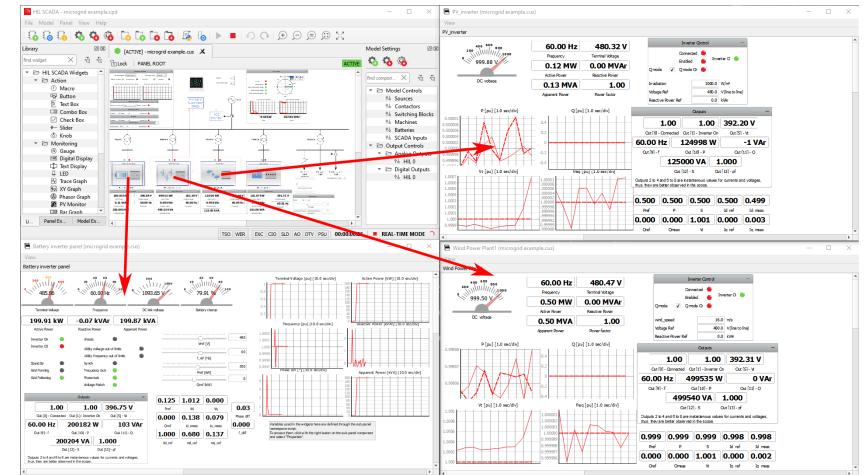
- Up until now many parameters of Signal Processing components were not tunable during runtime. This required model compilation for every parameter change.
- From now on, you can change parameters of Signal Processing components during simulation. Some of the parameters you can change are:
 - Value of the constant component
 - Amplitude and frequency of the sinusoidal, triangular and wave source
 - Filter parameters
 - Etc.
- Your manual and automatic tests now take much less time and run more fluently



2.1 Windowed mode for HIL SCADA sub-panels

HIL SCADA is video-wall ready

- Support for working with a separate windows in a single SCADA panel.
- Sub-panels can now work in Windowed and Embedded modes (right click -> Switch to Windowed mode).
- If Windowed mode is selected, double clicking puts the Sub-panel canvas in a separate window.
- Sub-panels in windowed mode can be set to full screen mode.
- In Embedded mode, the Sub-panel keeps its usual behavior.
- Saving a panel saves the complete panel layout (windows sizing and positioning).


Sub-Panel		
-98.74 V	Palat	
	🔀 Delete widget	Del
tet t	Copy widget	Ctrl+C
244.06 V	∑ Cut widget	Ctrl+X
	Bring to front	
	Send to back	
_	🖶 Open Sub-Panel	
	Switch to Windowed mode	
_	{} Show namespace	
	il Copy Widget ID	
	il Copy Widget Fully Qualified Name	
	C Properties	

2.2 Windowed mode for HIL SCADA sub-panels

See more of what's important

- Especially useful when working with complex Microgrid models.
- Fast and easy navigation to commands and readings inside different subpanels.
- Improved situational awareness on multiple screen setups (i.e. video walls).

3.1 Setting AO/DO signals in Schematic Editor

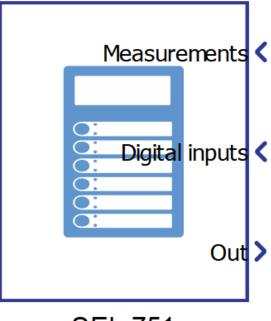
Improved model version control for AO/DO signal setup

- The AO/DO signal settings can now be done in the schematic file.
- Better model version control by eliminating the need for setup in HIL SCADA or in standalone tests.
- Packaging power stage models for C-HIL in library components without manually scaling adjustments in SCADA.
- In larger systems, where multiple controllers and Multi HIL setup are included, moving controller to another HIL is easier.
- Easier C-HIL model expansion from unit to system level.

A	nalog Outputs	Digital Outputs							
	Name	Signa	I	Scaling	Offset	Enable Limits	Lower Limit	Upper Limit	Remove
1	A01	Ia.current	4	1.6	0		-10	10	-
2	A03	Ib.current	ф	1	0		-10	10	-
3	A05	Vdc.voltage	φ	250	0		-10	10	-
4	A07	Vab.voltage	φ	100	0		-10	10	-
5	A08	Vca.voltage	4	100	0		-10	10	-
6	AO9	Ia.current	ф	1.6	0		-10	10	-
7	AO10	Ib.current	φ.	1.6	0		-10	10	-
8	A011	Ib.current	φ	1.6	0		-10	10	-
9	A012	Ia.current	φ.	1	0		-10	10	-
10	A014	Ia.current	ф	1	0		-10	10	-
11	AO 16	(TI 2803x).i c.	.current 🔶	1	0		-10	10	_

4.1 IGBT leg with switch-level oversampling

Improved precision in high frequency switching applications

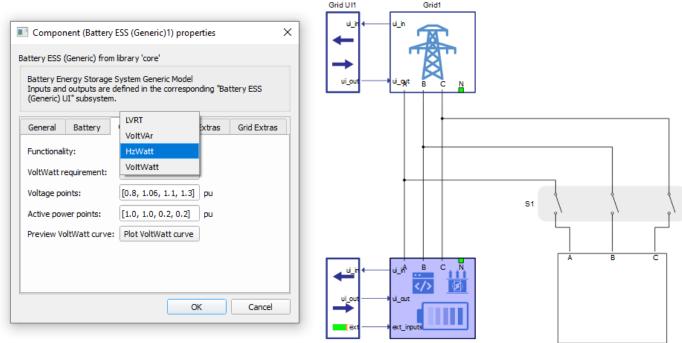

- When switch-level oversampling for IGBT leg component is enabled, compensation is done to every switch independently, contrary to global GDS oversampling where compensation is done on global level
- This component is useful in Dual-Active Bridge (DAB) and resonant converter applications since it grants much more precise simulation results on higher switching frequencies

DC+							
⊮]	Compor	ient (IGBT Leg) p	properties			×	
	IGBT Leg from	n library 'core'					
	There are	nd diodes are mod two options for co iternal modulator.		switches, converter switches	, through digit	al inputs or	
GBT Le	weight = 1						
	General	Measurements	Timing	Development	Advanced	Losses	
	Oversamp	ling setting: Swit	ch-level GDS	oversampling 🔻]		
	PESB Opti	mization: 🗸					
					ж	Cancel	

5.1 SEL-751 high-fidelity model

Test faster, compile less

- High-fidelity model of feeder protection relay.
- Configurable with SEL settings and logic files.
- Support for following protection functions:
 - Instantaneous/Definite-Time Overcurrent functions (phase, neutral, residual, and negative-sequence protection): ANSI 50P, 50N, 50G, 50Q
 - Time Overcurrent functions (phase, maximum phase, residual, neutral and negative sequence protection): ANSI 51P, 51PP, 51G, 51N, 51Q
 - Undervoltage functions (phase, and phase to phase protection): ANSI 27P, 27PP
 - Overvoltage functions (phase, phase to phase, residual, and negative-sequence protection): ANSI 59P, 59PP, 59G, 59Q

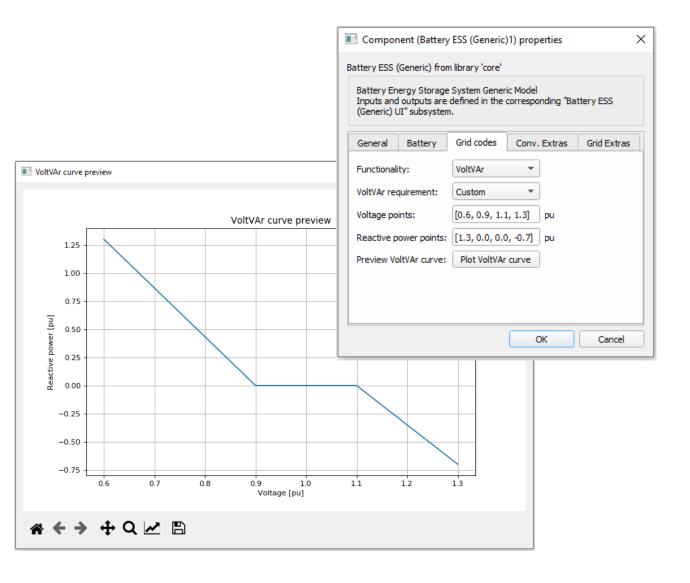


SEL-751

6.1 DER models w/ Volt-VAr and Hz-Watt grid support

More grid support functions for generic DER components

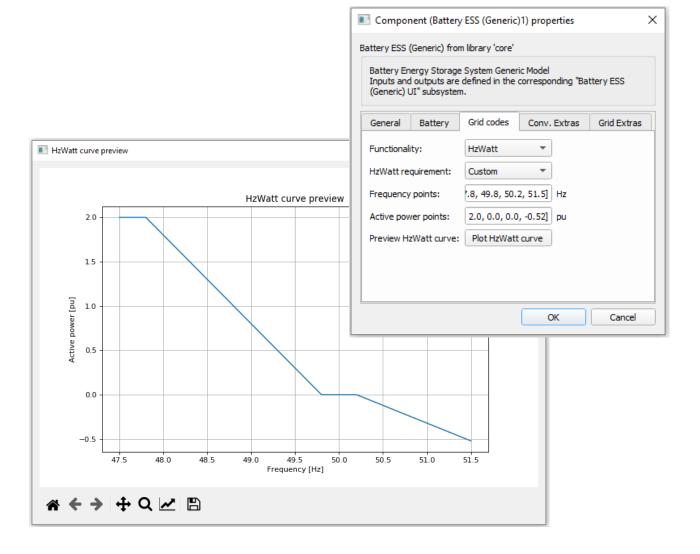
- Support VoltVAr, HzWatt, and VoltWatt grid codes in generic DER components
- Grid voltage triggers the VoltVAr and VoltWatt
- Grid frequency triggers the HzWatt
- Customize VoltVAr, HzWatt, and VoltWatt requirements


Battery ESS (Generic) UI1 Battery ESS (Generic)1

Constant Impedance Load1

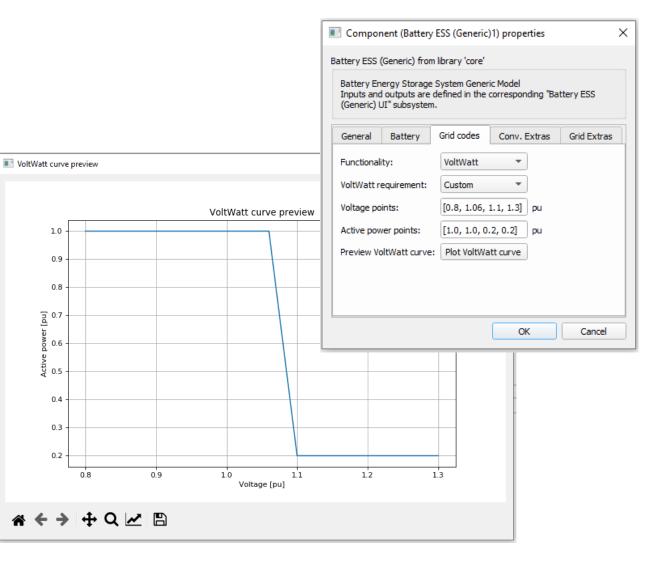
6.2 VoltVAr, HzWatt, and VoltWatt grid support functionality

VoltVAr functionality


- Enabled from HIL SCADA
- The reactive power injection depends on the voltage on the terminal of the DER

6.3 VoltVAr, HzWatt, and VoltWatt grid support functionality

HzWatt functionality


- Enabled from HIL SCADA
- The active power injection depends on the frequency on the terminal of the DER
- If the frequency is out of range the DER will stop running

6.4 VoltVAr, HzWatt, and VoltWatt grid support functionality

VoltWatt functionality

- Enabled from HIL SCADA
- The active power injection depends on the voltage on the terminal of the DER

Additional features and application examples

- Enhanced tooltips for disabled Schematic
 Editor components
- Documentation support for components in user libraries
- Islanding detection in IEEE34 bus using artificial neural network
- DC marine microgrid example

	Artificial Neural Network —					
	Mode Te	esting 🔻				
	Training —	Testing -				
E	Islanding	Islanding status —				
	The ANN will be trained with new point he counter reaches 5					
	Capture counter					
	Speed-up the training of the network by merging a pre-trained model	100.0%				
	Load Typhoon model	Accuracy (last 20 tests)				
	Typhoon model					
	Load user-saved model					
	User-saved model 🛛 🌑					
	Save model					

Learn More

- Visit: <u>https://www.typhoon-</u> <u>hil.com/products/2021-2-software-release</u>
- Contact Us: <u>info@typhoon-hil.com</u>

